NEW: Start my new Ultimate Portfolio App course with a free Hacking with Swift+ trial! >>

< Back to Latest Articles

User-friendly network access

Anyone can write Swift code to fetch network data, but much harder is knowing how to write code to do it respectfully. In this article we’ll look at building a considerate network stack, taking into account the user’s connection, preferences, and more.

Watch the video here, or read the article below

Optimal network detection

Let’s start with the basics: do we even have an active network connection?

Years ago, before “reachability” was used to make it easier to reach distant parts of an iPhone screen, Apple used the name for a small network class that would detect whether a server could be reached or not. Over the years this has been forked multiple times, and you’ll still commonly see it used in the wild.

These days, though, there’s a much better solution called NWPathMonitor. It comes with the Network framework that was introduced in iOS 12, and we can either restrict it to using particular network types (e.g. WiFi or cellular) or just let it work across all interfaces.

To use it takes a few steps, so we’re going to create a simple wrapper for it so you can either monitor it directly with SwiftUI, or in other frameworks using Combine.

This takes five small steps in total, starting with creating a new class that conforms to the ObservableObject protocol so we can announce updates as they come in. We’ll need to add some properties to this, the most important two of which are one to store the internal NWPathMonitor watching for changes, and one to store a DispatchQueue where the monitoring work will take place.

So, start by adding an import for Network, then add this new class to the same file:

class NetworkMonitor: ObservableObject {
    private let monitor = NWPathMonitor()
    private let queue = DispatchQueue(label: "Monitor")
}

Second, to make this easier to use we’re going to add four properties that describe the network availability we have: whether it’s active (do we have access to the network?), whether it’s expensive (cellular or WiFi using a cellular hotspot), whether it’s constrained (restricted by low data mode), and the exact connection type we have (WiFi, cellular, etc).

So, add these properties to NetworkMonitor:

var isActive = false
var isExpensive = false
var isConstrained = false
var connectionType = NWInterface.InterfaceType.other

Third, we need to give the class an initializer that tells the internal NWPathMonitor what it should do when changes come in, and tells it start monitoring on our private queue:

init() {
    monitor.pathUpdateHandler = { path in
        // more code here
    }

    monitor.start(queue: queue)
}

Now for the fractionally more complex part: whenever that // more code here closure is run, we need to store our latest networking values in our property, then notify anyone who is watching for updates.

This is mostly easy to do, but we do need to make an array of all possible connection types then find the first one that is actually available.

Replace the // more code here comment with this:

self.isActive = path.status == .satisfied
self.isExpensive = path.isExpensive
self.isConstrained = path.isConstrained

let connectionTypes: [NWInterface.InterfaceType] = [.cellular, .wifi, .wiredEthernet]
self.connectionType = connectionTypes.first(where: path.usesInterfaceType) ?? .other

DispatchQueue.main.async {
    self.objectWillChange.send()
}

For the final step, we need to create an instance of NetworkMonitor then inject it into the SwiftUI environment. We can do that in the scene delegate by replacing the let contentView line with this:

let monitor = NetworkMonitor()

let contentView = ContentView().environmentObject(monitor)

And that’s it! We now have a reusable network monitor that works great in SwiftUI, but also can be used in UIKit and other frameworks because it just uses a simple Combine publisher.

To try it out in SwiftUI, use code like this:

struct ContentView: View {
    @EnvironmentObject var network: NetworkMonitor

    var body: some View {
        Text(verbatim: """
        Active: \(network.isActive)
        Expensive: \(network.isExpensive)
        Constrained: \(network.isConstrained)
        """)
    }
}

Once it’s running, you’ll find your UI automatically updates if you toggle WiFi or flight mode.

Waiting for access

If you want really great network access then you need to create your own URLSession. This is easy to do, and although it gives us control over the same constrained and expensive checks as before, we now also gain the ability to control caching and waiting – it’s one of the most beautiful parts of Apple’s APIs, and I wish more folks used it!

Here’s how a basic configuration might look:

func makeRequest() {
    let config = URLSessionConfiguration.default
    config.allowsExpensiveNetworkAccess = false
    config.allowsConstrainedNetworkAccess = false

    let session = URLSession(configuration: config)
    let url = URL(string: "https://www.apple.com")!

    session.dataTask(with: url) { data, response, error in
        print(data)
    }.resume()
}

With expensive and constrained network access disabled, that request will fail if Low Data Mode is enabled or if the user is on an expensive connection – i.e., cellular or WiFi backed by a cellular hotspot.

The nice thing about this approach is that it means all our requests honor our settings automatically – you can stash that session away somewhere, then make requests on it whenever you need.

But the real power is that we get new functionality, including the ability to defer our network request until access becomes available. This means we can start the request for some work now, provide it with whatever functionality we want to execute when it completes, and iOS will simply hold on to that until we finally have network access.

What does it take to make that happen? Just one Boolean:

config.waitsForConnectivity = true

To try it out, add that line to makeRequest(), then rewrite ContentView so it has a button that triggers makeRequest() when tapped:

var body: some View {
    Button("Fetch Data", action: makeRequest)
}

Try running that on a real device that has flight mode on and WiFi off – you’ll see nothing happens. But as soon as you enable some sort of network, you’ll see something like “Optional(67820 bytes)”, which is the completed download of the Apple website.

This is the ideal way of working with data, particularly when it’s large: we want to have it at some point but not necessarily now, and not if the user is using an expensive or constrained network.

But having a custom URL session allows us to go one step further: we can have complete control over the way data is cached. By default we’ll have our data while our app is running, but we can just adjust our configuration so that data is always reloaded like this:

config.requestCachePolicy = .reloadIgnoringLocalCacheData

Putting all this together, we can get sensible caching, requests that wait until network access is available, requests that refuse to work over expensive or constrained networks, and super slick network detection with NWPathMonitor – not bad!

Challenges

There are a few tasks I recommend you try to make our code more flexible:

  1. Update the NetworkMonitor class so that we can create the internal NWPathMonitor using a specific interface type if needed. This should be alongside the current initializer, but it should allow us to request WiFi specifically.
  2. Also add a way to stop our network monitor from working.

If you liked this, you'd love Hacking with Swift+…

Here's just a sample of the other tutorials, with each one coming as an article to read and as a 4K Ultra HD video.

Find out more and subscribe here


Understanding generics – part 1

20:01

INTERMEDIATE SWIFT

FREE: Understanding generics – part 1

Generics are one of the most powerful features of Swift, allowing us to write code once and reuse it in many ways. In this article we’ll explore how they work, why adding constraints actually helps us write more code, and how generics help solve one of the biggest problems in Swift.

Making your app accessible

33:12

ULTIMATE PORTFOLIO APP

FREE: Making your app accessible

It is my firm belief that every iOS app should be usable to everyone, and putting in the work to make your app function well no matter who is using it says a lot about the kind of developer you are.

Using memoization to speed up slow functions

36:18

HIGH-PERFORMANCE APPS

FREE: Using memoization to speed up slow functions

In this article you’ll learn how memoization can dramatically boost the performance of slow functions, and how easy Swift makes it thanks to its generics and closures.

Making the most of optionals

23:07

ADVANCED SWIFT

FREE: Making the most of optionals

Swift’s optionals are implemented as simple enums, with just a little compiler magic sprinkled around as syntactic sugar. However, they do much more than people realize, and in this article I’m going to demonstrate some of their power features that can really help you write better code – and blow your mind along the way.

Creating a custom property wrapper using DynamicProperty

14:20

INTERMEDIATE SWIFTUI

FREE: Creating a custom property wrapper using DynamicProperty

It’s not hard to make a basic property wrapper, but if you want one that automatically updates the body property like @State you need to do some extra work. In this article I’ll show you exactly how it’s done, as we build a property wrapper capable of reading and writing documents from our app’s container.

Trees

31:55

DATA STRUCTURES

FREE: Trees

Trees are an extraordinarily simple, extraordinarily useful data type, and in this article we’ll make a complete tree data type using Swift in just a few minutes. But rather than just stop there, we’re going to do something quite beautiful that I hope will blow your mind while teaching you something useful.

How to use phantom types in Swift

24:11

ADVANCED SWIFT

FREE: How to use phantom types in Swift

Phantom types are a powerful way to give the Swift compiler extra information about our code so that it can stop us from making mistakes. In this article I’m going to explain how they work and why you’d want them, as well as providing lots of hands-on examples you can try.

Creating a WaveView to draw smooth waveforms

32:08

CUSTOM SWIFTUI COMPONENTS

FREE: Creating a WaveView to draw smooth waveforms

In this article I’m going to walk you through building a WaveView with SwiftUI, allowing us to create beautiful waveform-like effects to bring your user interface to life.

Ultimate Portfolio App: Introduction

14:17

ULTIMATE PORTFOLIO APP

FREE: Ultimate Portfolio App: Introduction

While I’m sure you’re keen to get started programming immediately, please give me a few minutes to outline the goals of this course and explain why it’s different from other courses I’ve written.

Shadows and glows

19:50

SWIFTUI SPECIAL EFFECTS

FREE: Shadows and glows

SwiftUI gives us a modifier to make simple shadows, but if you want something more advanced such as inner shadows or glows, you need to do extra work. In this article I’ll show you how to get both those effects and more in a customizable, flexible way.

Queues and deques

28:18

DATA STRUCTURES

Queues and deques

Now that we’ve covered stacks and linked lists, queues and deques ought to be easier. In this article we’ll build both data structures in just a few lines of Swift, then explore interesting additions such as contains().

Creating chained network requests with Combine

18:36

NETWORKING

Creating chained network requests with Combine

We already looked at how to fetch decodable data using Combine, and also how to fetch and merge multiple sources of data. In this article we’ll tackle something even more complex: creating chained network requests, where the information retrieved from one request must be used to create multiple other requests.

Creating a FilteringList to filter a list using text input

27:34

CUSTOM SWIFTUI COMPONENTS

Creating a FilteringList to filter a list using text input

Many apps show lots of data in a list, and allow users to filter that list by typing in a text view. In this article we’re going to build that in SwiftUI, then pull it out into a reusable component you can apply anywhere.

Controlling views using the accelerometer

39:03

SWIFTUI SPECIAL EFFECTS

Controlling views using the accelerometer

Reading device motion and orientation is a fast and slightly magical way to incorporate the real world into your apps, and can do a huge amount to add a little spark of delight to your UI. In this article I’m going to show you how easy it is to control SwiftUI layouts using the accelerometer, and give you a few ideas for special effects.

Parsing difficult JSON

26:05

WORKING WITH DATA

Parsing difficult JSON

If you have nice, clean JSON then using Swift and Codable is like a dream come true. But what if you have messy JSON, or JSON where you really don’t know what you’ll receive ahead of time? In this article I’ll show you how to handle any kind of JSON in an elegant way, without relying on third-party libraries.

Creating a ShapeView to render UIBezierPaths

10:03

CUSTOM SWIFTUI COMPONENTS

Creating a ShapeView to render UIBezierPaths

Bezier paths let us draw all sorts of shapes efficiently and smoothly, and with a little work we can bring them into SwiftUI then animate them smooth, and in this article I’m going to walk you through making a very simple ShapeView struct to do just that.

Using dates safely and effectively

18:36

MAKING THE MOST OF FOUNDATION

Using dates safely and effectively

Working with dates in software is hard, and if you don’t understand why then think about time zones, think about leap years, or think about how it’s the year 2563 in the Thai calendar. Apple gives us many tools for making them easier but they can be hard to discover, so in this article I’m going to try to provide some clear guidance for what to use and when.

Bringing MVVM into our SwiftUI project, part 1

43:39

ULTIMATE PORTFOLIO APP

Bringing MVVM into our SwiftUI project, part 1

The final major change we’re going to make to our project is to look at how it fits in with the MVVM design pattern. I left this one to last because it’s quite a jump from our previous work and in some respects SwiftUI even fights against it, but I do think it’s worth exploring so you can be sure your code is sound.

Codable networking with Combine

16:18

NETWORKING

Codable networking with Combine

So much of our job is about downloading JSON data, decoding it using Codable, then presenting it – it’s a core skill. But it’s common to see folks rely on huge libraries such as Alamofire, or get mixed up with URLSession. So, in this article we’ll look at how to rewrite common networking code using Combine, then add some generics to make it truly flexible.

Remaking the Tips app

27:45

REMAKING APPS

Remaking the Tips app

In this article we’re going to look at how to rebuild the Tips app using SwiftUI, including how to make scrolling tabs of content, how to get a parallax scrolling effect, and more.

 
Unknown user

You are not logged in

Log in or create account
 

Link copied to your pasteboard.