
Paul Hudson

SWIFTDATA
BY EXAMPLE

HACKING WITH SWIFT

COMPLETE REFERENCE GUIDE

Get hands-on solutions
for common problems

FREE SAMPLE



Chapter 1
Introduction
A brief explanation of the basics of SwiftData

www.hackingwithswift.com2



What is SwiftData?
SwiftData is a fast, powerful, and easy-to-use way to store data in apps built for iOS, macOS, 
tvOS, watchOS, and even visionOS. It lets us create custom objects, define how they link 
together, retrieve them with filtering and sorting, and even synchronize them to iCloud – and 
much more too.

Not only does SwiftData take full advantage of the latest Swift language features, but it’s also 
built with SwiftUI in mind: if you’re building apps with SwiftUI, you’ll find SwiftData slots in 
almost invisibly.

Behind the scenes, SwiftData is powered by a much bigger and more mature framework called 
Core Data. That brings all sorts of benefits, not least 20 years of development and maturity. 
But SwiftData is more than just a simple overlay: Apple really went to town in isolating and 
resolving the key pain points developers were reporting with the older framework, meaning 
that SwiftData is a significant improvement for anyone who has used Core Data in the past.

One downside is that SwiftData supports only iOS 17 or later, along with other coordinated 
releases – that’s macOS Sonoma, tvOS 17, watchOS 10, and visionOS 1.0.

SwiftData makes a great choice for any kind of on-device storage, including:

 1. Permanent storage of user data, such as their to do lists or cooking recipes.
 2. Temporary storage of user data, where SwiftData is used as a cache for data fetched from a 

server.
 3. Document-based apps, e.g. text or video editors.
 4. Complex user settings or history data.

It’s less of a great choice when:

 1. You need to support many users using iOS 16 and earlier. Although SwiftData and Core 
Data can live side by side by in the same app, it’s extra work.

 2. Your data is stored only in CloudKit or another equivalent service, and you need to be using 
live data at all times.

www.hackingwithswift.com 3



Introduction

 3. You need the full range of capabilities offered by Core Data. Many features from Core Data 
have yet to surface in SwiftData, so if you have more advanced use-cases you should 
probably stick with Core Data for now.

www.hackingwithswift.com4



SwiftData vs Core Data
Although SwiftData builds on top of Core Data, not all the functionality has been exposed for 
us to use. This means quite a few major Core Data features are not yet supported for 
developers working exclusively in SwiftData, including:

 1. We don’t have an equivalent of NSCompoundPredicate, for creating complex, multi-step 
predicates.

 2. We don’t have an equivalent of NSFetchedResultsController, for executing then 
monitoring queries for changes.

 3. There is no support for derived attributes, so things like an automatic lastUpdated property 
aren’t possible.

 4. There are no sectioned fetched requests.
 5. SwiftData does not support abstract classes or child contexts.
 6. Or pinning to a specific query generation.

Everyone will have different priorities for those features, but for me missing the first two is 
hard. Hopefully we’ll see SwiftData continue to improve rapidly over time, until we 
eventually reach full parity with Core Data.

You should also keep in mind that SwiftData is extremely new, whereas Core Data has been in 
constant development for about 20 years. This means you’re likely to hit edge cases and 
surprises on a fairly frequent basis, and I think it’s fair to say that SwiftData has more sharp 
edges than a porcupine’s dance party. Do things exactly right and you’ll be happy, but a lot of 
the time you’ll find yourself staring at a crash wondering which small but apparently critical 
mistake you made.

Don’t despair – it will get better! In the meantime, please watch out for the many things 
marked Important or Tip in this guide; I’ve gone through the pain for you, so please save 
yourself the hassle and learn from that pain rather than repeating it.

www.hackingwithswift.com 5



Should you learn SwiftData, Core 
Data, or both?
Because SwiftData is an overlay over Core Data, deciding to learn either SwiftData or Core 
Data is a fairly easy one: if you are able to live without the missing features such as 
NSFetchedResultsController, and you are able to target iOS 17 and later, learning SwiftData 
is significantly faster and easier – you’ll be building apps in a tenth the time it would take for 
you to learn Core Data.

However, the nice thing about its overlay status is that it’s surprisingly easy to move from 
SwiftData to Core Data without risking any user information. This means if you’re six months 
into a project and realize you just can’t live without one particular feature, you can move your 
code across to the older framework without too much hassle.

One slightly less obvious downside to SwiftData is that its newness means it has significantly 
less documentation available, both from Apple but also the community. This means if you 
have a problem you’ll have a harder time finding solutions, simply because there are fewer 
people asking and answering on sites such as Stack Overflow. Hopefully this book goes a long 
way to filling the gaps!

In the meantime, one thing you can be clear on is Apple's direction of travel: Swift, SwiftUI, 
and SwiftData are the best way to build apps for Apple's platforms, and will continue to 
expand for years to come.

One signal for this is the logos: Swift, SwiftUI, and SwiftData all have logos that incorporate 
the Swift bird, which I think is intentional – I think it's Apple's way of saying these three form 
the new Cocoa. In the past, Cocoa meant using Foundation, AppKit, and Core Data, but now 
we have the Swift standard library, SwiftUI, and SwiftData, all of which combine to make app 
development as enjoyable, efficient, and safe as it can be.

www.hackingwithswift.com6



Frequently asked questions about 
SwiftData
Ever since SwiftData was announced folks have been asking a whole bunch of questions to 
me, to Apple engineers, and more. I’ve answered as many of those as I can in this book, but 
the questions below are asked particularly commonly:

Is it hard to start using SwiftData?
Core Data had quite a difficulty ramp for getting set up properly, but SwiftData takes such a 
small amount of code you’ll almost think you’ve missed something! Even when you start 
venturing into more advanced features, SwiftData does a great job of progressive disclosure – 
you can learn it bit by bit and get benefit at each step of the way, rather than having to learn 
many things at once just to get moving.

Can Core Data apps be migrated to SwiftData?
Yes! SwiftData uses Core Data under the hood, which means all your data structures and more 
will remain intact. This means if you’ve shipped a Core Data app already, you can move over 
to SwiftData either partly or entirely whenever you’re ready.

Can Core Data and SwiftData exist in the same app?
Yes, you can have both stacks running at the same time. Heck, they can even be pointing to the 
same data, and will stay in sync. Please make sure you keep the two data models in sync, 
though – if you adjust your Core Data model, make sure you apply the same change to your 
SwiftData model too.

Do @Model classes need to be marked final?
No, but if you try subclassing them you're going to cause a lot of pain for yourself. If you want 
to avoid temptation, make your classes final.

www.hackingwithswift.com 7



Introduction

Why doesn’t SwiftData use structs for data models?
We all know Swift and SwiftUI developers love using structs as a simple and efficient way to 
represent data, but with data it’s complicated: if we load an array of users, then pass one user 
around for editing, we need to be able to keep all the screens in our app up to date as the user 
makes changes.

Sure, we could try to pass around an object identifier and just that to refer to an object, but if 
you think about it you’re kind of just recreating pointers – it’s a lot of extra effort just to land 
up with more or less the same result.

That’s not to say SwiftData must only use classes: you can incorporate any kind of Codable 
data into your models, including both structs and enums, and SwiftData will ensure they are 
saved and loaded correctly.

Is there a way to force a CloudKit sync?
No; Apple really don’t want us trying to do this.

Is there a way to add Codable support to a SwiftData object?
Yes, but it takes a little thinking – we don’t get automatic Codable support, and instead we 
need to implement it ourself.

Can SwiftData be used with Objective-C?
No. Not only does it use native Swift classes, but it also uses a range of advanced Swift 
language features that aren’t available in Objective-C.

www.hackingwithswift.com8



How to follow this quick start 
guide
This guide is called SwiftData by Example, because it focuses particularly on providing as 
many examples as possible, with each one solving real problems you’ll face every day.

I have tried to structure this so that most entries starts with “How to…” because this is about 
giving you hands-on code you can use in your own projects immediately. That also means I’ve 
tried to get to the point as fast as possible and stay there, so if you’re looking for a longer, 
slower introduction to SwiftData I’m afraid this isn’t it.

Already got some experience?
If you’ve already grabbed the basics of SwiftData and just want code that solves your 
problems, by all means just jump in wherever interests you.

My code examples are specifically written for folks who are following along more or less 
linearly, so if you’re want to make those changes you may need to do a little light editing to 
make it fit your code.

Just starting out?
If you’re just starting out with SwiftData you should start by completing the initial sample 
project, then just skip around based on what interests you.

I would recommend against using Xcode's SwiftData template. It doesn’t add a great deal 
of helpful code, and you’ll just need to replace it with your own code anyway.

www.hackingwithswift.com 9



Migrating from Core Data to 
SwiftData
If you’ve used Core Data before, many of the classes and concepts you know and love map 
pretty much directly to their SwiftData equivalents, albeit with simpler names and always 
without the NS prefix.

Here’s a list to get you started, with Core Data names followed by SwiftData names:

• NSPersistentContainer: ModelContainer
• NSPersistentCloudKitContainer: ModelContainer with iCloud enabled.
• NSManagedObjectContext: ModelContext
• NSManagedObject: the PersistentModel protocol and @Model macro
• NSPredicate: the #Predicate macro
• NSFetchRequest: FetchRequest
• NSFetchDescriptor: FetchDescriptor
• NSCompoundPredicate: Has no equivalent yet
• NSSortDescriptor: SortDescriptor
• NSMigrationStage: MigrationStage
• NSEntityMigrationPolicy: SchemaMigrationPlan

Most notably, Xcode’s model editor is no longer needed now – it’s all code.

www.hackingwithswift.com10



Dedication
Ever since SwiftUI shipped, folks in the community were asking the same question: when will 
Core Data get its own SwiftUI-like rethink?

It might sound easy from our perspective as external developers, but the truth is that taking 
something as mature and powerful as Core Data and transforming it for modern Swift is a 
gigantic undertaking.

We wanted to keep all the power features of Core Data, such as data migration, iCloud 
support, faulting, and more, but we also wanted a significantly simpler API, we wanted tight 
integration with SwiftUI, and above all we wanted something "Swifty" – something that used 
the Swift language to its fullest, so it could be as expressive as possible.

Apple announced SwiftData at WWDC23, and it has proved to be a gigantic step forward for 
app developers. The team behind it have managed to blend the power of Core Data with the 
simplicity and clarity of Swift, and when you start using it you'll realize just how amazing 
SwiftData is – it's often almost invisible, which is remarkable.

Getting to this point took an astonishing amount of effort from the SwiftData team, from the 
Core Data team, from the Swift and SwiftUI teams, plus developer publications and so many 
more. 

I wish I could list them all here and thank them personally, but the only ones I can be sure of 
are the people who have appeared in recent WWDC videos or who have mentioned their 
involvement publicly.

So, this book is dedicated to Daniel Duan, Nick Gillett, Debbie Goldsmith, Luvena Huo, Scott 
Perry, Matt Ricketson, Jeremy Schonfeld, David Stites, Ben Trumbull, Julia Vashchenko, 
Rishi Verma, and all the dozens of other folks who worked so hard to make SwiftData what it 
is today. This absolutely includes the many people who have contributed to Core Data to make 
it what it is today, all the way back to Bill Bumgarner, because SwiftData is truly standing on 
the shoulders of giants.

www.hackingwithswift.com 11



Introduction

We may never know how many more folks from around Apple helped make SwiftData what it 
is, but I hope every one of them feels proud to have helped bring it to life.

Thank you.

PS: I was there at Apple Park when Apple announced SwiftData. Having spent a decade 
teaching folks how to use Core Data, seeing SwiftData finally becoming a reality was a huge 
moment because I knew how much it would impact learners. If you'd like to see just how huge, 
I captured it live, just for you…

www.hackingwithswift.com12


